

Machine Learning Approach for Probabilistic Wind Power Forecasts with Discrete Probability Density Function

Anton Kaifel, Martin Felder, Frank Sehnke,

Kay Ohnmeiß, Leon Schröder

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), Stuttgart

Motivation

- > Detailed power forecast error information often requested
- Our standard Deep Neural Network (DNN) based method provides only StD estimate
- Calibration of NWP ensemble models causes additional complexity
- Usage of NWP ensembles with DNN still unclear

<u>But</u>:

- Analog Ensemble (AnEn) method shows there is uncertainty information in the historical data record
- Different NWP models can be combined to provide additional uncertainty information

<u>Question:</u> \rightarrow How can uncertainty information be presented to DNNs?

- 2 -

Target Encoding

Input and Target Datasets

Target data:

- Historical data from one wind farm in northern Germany
- EEX wind power data for Germany

Input data (=predictors):

- relevant fields from GFS-4, IFS and HIRLAM models
- live data (power measurements or EEX)

Data set	Time range	# of patterns	Test set
Wind farm	2013-2017	$\sim \! 33000$	12 months
EEX Germany	2015-2017	$\sim \! 26000$	2017

Probabilistic Forecast Results

shading corresponds to probability density

Transforming into Percentiles

Case Study for Wind Park in Chile

Wind park Totoral:

- > 23 Vestas V90 2MW
- Close to the Pacific coast

Input data (=predictors):

- > relevant fields from GFS-4, Env. Canada, WRF models
- Ive data (SCADA power measurements)

Case Study for Wind Park in Chile

Wind park Totoral: Local WRF mode

[source: Universidad de Valpariso]

Case Study for Wind Park in Chile

Dependence of Power Curve from wind direction

Percentiles for Wind Park in Chile

Totoral Wind Park

Precentiles Validation

Forecast Errors

Same Story for PV Power Forecast

Example: PV farm in Chile (1 h target resolution)

Conclusions

Simple method for producing PDF forecasts introduced

- needs only discrete target encoding and some postprocessing
- applicable for wind and PV power forecast
- > Neural networks (DN) use **historical uncertainty** info
 - similar to Analog Ensemble method
 - plus uncertainty from (small) number of different NWP models
- Improved method in preparation for operational application

// Energy with a future

// Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

Thank you for your attention!

contact: anton.kaifel@zsw-bw.de

Stuttgart: Photovoltaics Division (with Solab), Energy Policy and Energy Carriers, Central Division Finance, Human Resources and Legal Widderstall: Solar Test Facility **Ulm:** Electrochemical Energy Technologies Division, Main Building & eLaB

